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The discrete ordinates method for the solution of the radiative heat transfer equa-
tion suffers from two main shortcomings, namely ray effects and numerical smearing.
Spatial discretization, which is the cause of numerical smearing, constitutes the sub-
ject of the present work. Bounded skew high-order resolution schemes are applied
to the discrete ordinate equations and compared with standard bounded high-order
resolution schemes (CLAM, MUSCL, and SMART), as well as with the step scheme.
Calculations are performed for two- and three-dimensional enclosures with transpar-
ent, emitting—absorbing, and emitting—absorbing—scattering media. One of the walls
of the enclosure is hot, while the others are cold. The results demonstrate that the
bounded skew high-order schemes are more accurate than the bounded high-order
ones, regardless of the radiative properties of the medium. The improved accuracy is
more significant for the radiation intensity along directions oblique to the coordinate
lines, but it is also observed for the incident radiation. The difference between the
results of the skewed and the standard schemes is attenuated as the optical thickness
of the medium increases. A drawback of the skewed schemes is their higher compu-
tational requirements, associated with an increased number of iterations required for
convergence. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Radiative heat transfer plays an important role in many relevant engineering proble
including, for example, combustion applications (fires, fossil fuel fired utility boilers, rocke
nozzles and engines, etc.), solar energy systems, laser materials processing, and satelli
other space systems. Several numerical solution methods have been developed for rad
heat transfer problems, including the zone, the Monte Carlo, the spherical harmonics,
discrete transfer, the discrete ordinates, and the finite-volume methods [1]. Although
zone and the Monte Carlo methods are often considered the most accurate ones,
computational requirements are also the highest, and therefore none of the methods curr
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available can be considered the best one for all problems. The discrete ordinates me
[2, 3], which is employed in the present work, has emerged in the last decade as one o
most popular methods, providing a good compromise between accuracy and computati
economy.

The discrete ordinates method is based on the numerical solution of the radiative tr:
fer equation along a set of discrete directions spanning the total solid angle range of
replacing the integrals over direction by numerical quadratures. Two major shortcomi
of this method that may strongly affect the solution accuracy are the ray effect and
merical smearing, which have been discussed in Refs. [4, 5]. The ray effect is associ
with the angular discretization and arises from the approximation of the continuous ang
variation of the radiation intensity field by a discrete set of radiation intensities in spe
fied ordinate directions. It is independent of the spatial discretization. Ray effects may
mitigated by refining the angular discretization or by using the modified discrete ordina
method [6]. The numerical smearing, also referred to in the literature as numerical sca
ing or false scattering, is the counterpart of false diffusion in computational fluid dynam
(CFD). In fact, the radiative transfer equation can be interpreted as the convection
scalar (the radiation intensity) in a prescribed velocity field (characterized by the direct
cosines of the direction of propagation of radiation). There is a source term in the ¢
of a participating medium, but no diffusion term. The numerical smearing is associa
with the spatial discretization scheme, and it is independent of the angular discretizat
It arises in multidimensional problems when the radiation beams are not aligned with
grid lines.

An evaluation of spatial discretization schemes employed in the discrete ordinates me
has been presented in [7]. The two most widely used ones are the step and the diar
schemes, which are the counterparts respectively, of the upwind and the central differen
schemes in CFD. The great advantage of the step scheme is that physically unrea
negative radiation intensities are never predicted. However, excessive humerical sme:
is introduced by this scheme. The diamond scheme reduces the numerical smearing, |
may yield overshoots and undershoots of the boundary intensities, and negative intens
may appear. These negative intensities may be eliminated using the negative intensity
up procedure proposed in [2], which sets them to zero. However, spatially oscillati
physically unrealistic intensities may still occur. This problem is shared by the positi
scheme [8], which ensures positive radiation intensities, but not necessarily bounded c
Negative radiation intensities may also be prevented by using a variable weight scheme
that combines the step and the diamond schemes. The diamond scheme is used if ne
intensities are not found. Otherwise, a weighted average of the two schemes is used
the weight is selected by trial and error to enforce positive values. The exponential sch
is potentially more accurate in one-dimensional computations, but not in multidimensio
ones, where unbounded solutions may occur, as discussed in [7].

All the spatial discretization schemes mentioned above treat the radiation across a co
volume face as locally one dimensional. This means that the radiation intensity at a cell f
is calculated from the radiation intensity at points that lie along the normal to the cell fa
Other schemes have been proposed to account for the multidimensional nature of radi
(i.e., schemes that calculate the radiation intensity at a cell face based on the radie
intensity at points that lie along the direction of propagation of radiation). The simple
of these schemes is the modified exponential scheme [10], which integrates the radi
transfer equation along every direction assuming a constant source term. The upsti
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location must be chosen carefully to avoid negative nodal intensities and wiggles. A sim
scheme, which differs only in the evaluation of the upstream intensity, is presented
Ref.[11]. Animproved high-order exponential scheme has been proposed in the formula
of the finite-volume method for radiative heat transfer [12]. The finite-volume method f
radiative transfer has many similarities to the discrete ordinates method, and so this schel
applicable to both methods. The interpolation of the upstream intensity from grid node vall
must be done carefully to ensure conservation. Similar high-order exponential schel
have been employed in [13, 14]. These authors use the discrete ordinates interpole
method, a modification of the standard discrete ordinates method which does not use
control-volume formulation. This allows greater flexibility in the calculation of the upstreal
radiation intensity, but does not ensure conservation of radiative energy. All these ske\
schemes are potentially more accurate than the locally one-dimensional ones mentic
before. A skewed upwinding procedure has recently been proposed [15] in the framew
of the control-volume finite-element method using triangular control volumes for tw
dimensional problems. The scheme is stable and economical and it inherently preclude
possibility of computing negative coefficients in the discretized algebraic equations (i.
negative intensities do not appear). It is more accurate than the step scheme but is
first-order accurate.

Bounded high-order resolution (HR) differencing schemes initially developed in the CF
community have also been applied to solve the radiative transfer equation using the disc
ordinates method. The SMART scheme [16] has been employed in [17], and the MINMC
[18], MUSCL [19], CLAM [20], and SMART schemes have been used in [21]. As ir
CFD, it has been shown that the radiation intensity field computed using these schem:
much more accurate than that obtained using the step scheme, the diamond scheme, ¢
modifications.

The HR schemes treat the radiation across a control-volume face as locally one-dime
onal. Jessee and Fiveland [21] have pointed out that one of the most promising sp:
discretization methods is probably a HR scheme in which the interpolation stencil is aligr
with the ordinate directions. Such bounded skew high-order resolution (SHR) schemes
recently been developed for CFD [22]. The objective of this work is to demonstrate t
application of these SHR schemes to the discrete ordinates method and to investigate
performance. We consider only transparent or gray media, but the extension to nong
media is straightforward.

The discrete ordinates method is briefly described in the next section, and the discret
tion schemes employed in this work are presented. Several test problems are then solve
two- and three-dimensional enclosures with transparent, emitting—absorbing or emittil
absorbing—scattering media. The main conclusions are drawn in the last section.

2. THE DISCRETE ORDINATES METHOD

2.1. The Radiative Transfer Equation

The radiative transfer equation may be written as follows for an emitting—absorbin
scattering gray medium [23]:

diee _ s /
g5 = PO+t~ Aﬂl(g)mg,s)dsz. 1)



SCHEMES FOR DISCRETE ORDINATES METHOD 415

In this equation| () is the radiation intensity in directios) I, is the blackbody radiation in-
tensity, B, andos are the absorption, extinction, and scattering coefficients of the mediul
respectively; anad (s, s) is the scattering-phase function. The ragi(s, s)/47 represents
the probability that radiation propagating in directisrand confined within solid angle
dQ?’ is scattered through the ange sinto the directiors confined within solid angld <.

The boundary condition for a gray surface that emits and reflects diffusely, given
Ref. [23], is

|u,(s)=g|bw+ﬁ/ | (&) -<]de, @)
T Jns<0

wherel,, (s) is the radiation intensity leaving the boundary surfdag,) is the radiation
intensity in thes' direction arriving at that surfacéy,, is the blackbody radiation intensity
at the temperature of the boundary surfacés the surface emissivity, is the surface
reflectivity, andn is the outward unit vector normal to the surface.

2.2. The Discrete Ordinate Equations

In the discrete ordinates method, the radiative transfer equation is replaced by a dis
set of M coupled differential equations that describe the radiation intensity field &bng
directions. Integrals over solid angles are replaced by a quadrature ofvrgézlding

dim m 0s O
4 =P +K|b+EZ|'¢(sj,sﬂ)w,», ©)
j=1

where the superscript denotes thenth direction andw; is the quadrature weight of
the jth direction. In the present work, level symmetrig §uadratures were uset(=
N(N + 2)). The 3, S, and S quadratures satisfy sequential odd moments, and the S
and S, quadratures satisfy sequential even moments [24].

The boundary condition expressed by Eq. (2) is discretized as

|£‘=g|bw+§ > Un-sjlwj, n-sy>0. 4

(n-sj <0)

Spatial discretization of the discrete ordinate equations is carried out using the finite-volt
approach. Equation (3) is integrated over a typical control volume, and the Gauss diverge
theorem is applied. The terms on the right-hand side of Eq. (3) are assumed to be con
over the control volume. The in-scattering term (last one of Eq. (3)) is split into two par
one that accounts for the contribution of thigh direction, which is treated implicitly,
and the other accounting for all the other directions, which is treated explicitly [10]. Fol
Cartesian coordinate system and for a directiowith direction cosineg™, ™, andu™,
this yields the discretized equations

|$m|AX(I>r<]:|out_ I)Tin) + |T7m|Ay(|)r/r,]out_ I)Tin) + |Mm|AZ(|zn,ﬂlout_ er:n)

(of

= <—ﬂ|,2”+mjl,2"¢(sn,sn)wm+8',l‘>v, (5)
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where
Og M i
$=K|bP+E Z o (S, Smwj. (6)
(m

In these equationghy, Ay, and A, are the areas of the control-volume faces normal tc
thex, y, andz directions, respectivelyy is the volume; an&? is the modified source term
of the radiative transfer equation at grid nddend for directiorm. The subscripts of the
cell face intensities represent the directi@ny, or z) and the upstreanin) or downstream
(oup) face. IfE™ > 0, thenl i, and 1,7, are the intensities at the west and east cell faces
respectively. Conversely,§f" < 0, thenl;", andl{; ;are the intensities at the east and wes!
cell faces, respectively. The radiation intensities at the cell faces are unknowns and n
be related to radiation intensities at neighboring grid nodes. This may be accomplishec
using any of the schemes referred to in the introduction. Here, the family of SHR scher
[22] is considered. To our knowledge, such schemes had never been applied before
radiative transfer equation. However, it is useful to first address the HR schemes, wt
have also been used for comparison purposes.

2.3. Bounded High-Order Resolution Schemes

High-order resolution schemes express the dependent variable (the radiation intensi
the present case) at a cell fatas a function of its values at three neighboring grid nodes
two upstream and one downstream from the cell face. These are denoted by the subscriy
C, and D, as shown in Fig. 1, and are referred to as upstream, central, and downstrearr
nodes, respectively. Figure 1 represents two-dimensional control volumes for the sak
clarity. The normalized variable formulation introduced by Leonard [25] has provided ago
framework for the development of HR schemes. This has been extended to nonuniform ¢
in Ref. [26], where it is referred to as normalized variable and space formulation. Accordi
to this formulation, a normalized radiation intensitand a normalized coordinafeare
defined as

=1y

| = , (7a)
Ip—lu
X — X
§F=_"9 (7b)
Xp — Xu
N NE
Ly
[ [ ¢ [
| Csi—] E=n X
Us. :
L) [ L) [
SwW S

FIG. 1. Typical control volume. The radiation intensity at the east cell face is computed from its values
upstream (U), central (C), and downstream (D) grid nodes in HR schemes, and upstream (Us), central (Cs)
downstream (Ds) points alorggirection in SHR schemes.
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Bounded schemes must satisfy a boundedness criterion originally described in [16].
criterion is directly applicable to the radiative transfer equation, as reported in Ref. [2
and may be summarized as follows.

(i) The functioni s = f(i'¢) is continuous.
(i) ic<if<1forO0<ic<Ll
(i) Tf=1c for ic<0oric>1

The step scheme in the normalized variable and space formulation is writtgn-asd c.
Therefore, itis a bounded scheme but only first-order accurate. In fact, it has been showr
a necessary and sufficient condition for a scheme to be second-order accurate is to be de
by a functional relationship passing through the pok, X¢), or (0.5, 0.75) for uniform
grids [16, 26]. If, in addition, the slope of the functional relationship at that point is equ
to X1 (Xt — 1)/[Xc(Xc — D), or 0.75 for uniform grids, then the scheme is third-order
accurate [16, 26]. Many schemes satisfying the boundedness criterion have been deve
since this criterion was formulated (see, e.g., Ref. [27]). Among them, the CLAM [2(
MUSCL [19], and SMART schemes were used in the present work. These schemes
given by the following functional relationships [26].

CLAM:
oo KR Ri=%0) oo 1ooq (6a)
Xc(Xc — 1) Xc(Xe —1) © '
it=1ic elsewhere (8b)
MUSCL:
L 2% — R ~ .
(=22 7XC00 foro<ic<%c/2, (9a)
Xc
It =1c+ & —%c) forfe/2<ic<1+RKe—Ks, (9b)
if=1 forl4+%c —%¢<ic<1, (9c)
if=1Ic elsewhere (9d)
SMART:
~ X¢(1—3Kc + 2X+) ~ ~ o
I = I forO<| Xc/3, 10a
f ol —%0) <lc<ZXc/ (10a)
~ Xe(A—=X¢) ~  Xi(X¢ —Xc) Xc ~ Xc . o
lf = ——————1 — for =< —(1+Xs =X 10b
f el — o) c+ 1—%o) 3 = C<>?f( + Xt —Xc), (10b)
. Xc . o ~
lf=1 for),_(,—(1+Xf—XC)§IC<1, (10c)
f
it=1ic elsewhere (10d)

It is worth pointing out that the results of the CLAM scheme are not necessarily bounc
for nonuniform grids. Although uniform grids were used in this work, the upstream gr
node (U) lies on the boundary surface for control volumes whose upstream cell face is
the boundary surface. Therefore, the normalized coordinates at the downstream cell fac
X¢ =2/3 andXc = 1/3, which differ from the values at interior control volumé&s:=3/4
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andXc = 1/2. The functional relationship of the CLAM scheme in normalized coordinate
is a second-degree polynomial in the range - < 1, given by Eq. (8a). Therefore, since
[ t(0)=0andi (1) = 1, the boundedness criterion will be violated if; /di'c =0 in that
range (i.e., there will be points whefg > 1). It is easy to verify that the derivative will
vanish at a pointin the range<0fc < lifthe conditionX; > Xc (2 — X¢) holds. If the grid

is uniform, this condition is never verified for interior control volumes, and the scheme
bounded. However, in anonuniform grid, that condition may be verified and the boundedr
criterion violated. The condition is also verified%f =2/3 andXc = 1/3. However, it is
easy to enforce boundedness by setting: 1 if the second-degree polynomial in the range
0 < I¢ <1 yields a value greater than 1. This simple strategy was employed in all CLA
and skew CLAM results reported here.

2.4. Bounded Skew High-Order Resolution Schemes

In SHR schemes, the dependent variable at a cellfasalso determined from its values
at three neighboring points, two upstream and one downstream from the cell face. Howe
these are not grid nodes but points located at the intersection of the direction of prope
tion of radiation,s, with the grid lines, as shown in Fig. 1. The radiation intensity at thes
points, denoted by Us, Cs, and Ds, is calculated from linear interpolation of the radiat
intensity at the neighboring grid nodes. For example, the radiation intensity at point Us
Fig. 1 is computed from linear interpolation of the radiation intensity at grid nodesW
and SW. In three-dimensional problems, a bilinear interpolation is used. A more accut
interpolation scheme is likely to be needed to preserve the accuracy of schemes of @
greater than second. Among the schemes employed here, only the SMART scheme
present such a high order of accuracy. However, this has not been observed in the cals
tions reported in [21], and therefore a linear interpolation was always used in the pres
work.

The normalization of the radiation intensity and coordinate are based on the radia
intensities and coordinates along thairection:

L=

fg= —° (11a)
Ips — lus
S_

= S"Ws (11b)
Sbs — SUs

The normalized coordinages calculated from distances measured along diresticather
than along the coordinate axes. The radiation intensity at cell faisecomputed using
Egs. (8), (9), or (10), with s and substituted fol andX, respectively.

The boundedness criterion mentioned above ensures that the radiation intensity a
cell face is bounded with respect to the interpolated radiation intensities at Us, Cs, and
However, it is not necessarily bounded with respect to the neighboring grid nodes of
facef (U, C, and D). Therefore, wiggles in the computed radiation field may still occur. T
avoid an unbounded solution it is necessary to proceed as follows [22]. First, the radia
intensity at a cell face is calculated as described (i.e., from the SHR scheme applied tc
points lying along the direction of propagation of the radiation intensity). Then, it is check
if the computed cell face radiation intensity satisfies the boundedness criterion with resy
to the neighboring grid nodes (U, C, and D). If it does, then no additional corrections :
needed; otherwise, the boundedness criterion is enforced using the HR scheme inste
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the SHR one. At cell faces coincident with downstream boundaries, there is no downstre
grid node. Therefore, the step scheme was used in that case.

2.5. Solution Method

The SHR schemes were implemented using the deferred correction procedure [28].
cording to this method, the downstream cell face radiation intensities are expressed a
radiation intensities computed from the step scheme plus a correction equal to the differe
between the radiation intensities computed from the SHR scheme and the step schem

m _m m m
f.out — f,outstep+ (I f,out SHR — I f,outstep>' (12)

The contribution from the step scheme is treated implicitly while the correction term
parenthesis is treated explicitly. Inserting Eq. (12) into Eq. (5), notinglthat step= 5,
and solving forl £ yields

|Em|AX X|n+|77m|AY ym+|um|AZ Z|n+sg1v+%[::

IE™ A + ™Ay + [T Az + (ﬂ - ﬁqb(sn, Sm)wm)v
where the deferred correction ter@, is defined as
%T;: |€m|AX(I I)';nout) +|7lm|Ay(| I;nout) +|Mm|AZ<| lzmou’[) (14)

All the cell face radiation intensities in Egs. (13) and (14) are obtained from the St
scheme, and so no explicit reference to the scheme is included in the subscript. The ve
of I{oues 1y outs @NdI T, are computed from Eq. (11) and Egs. (8), (9), or (10), depending ¢
the specific SHR scheme employed, using the radiation intensities computed at the pre\
iteration for downstream grid nodes, and at the current iteration for upstream grid noc
The values of '} ., 17}, and 1}, are available either from the boundary conditions, if ar
upstream cell face coincides with a boundary, or from the calculations performed for
upstream control volumes.

In eachiteration, and for each direction, the surface radiosities and the blackbody radia
intensities are either known or guessed based on the values computed in the pre\
iteration. The surface irradiation is neglected in the first iteration. The radiation intensit
at every control volume and direction are determined by a point-by-point method appliec
Eq. (13). For each direction, calculations start from a control volume at one of the corn
of the enclosure. That corner is selected from the sign of the direction cosines, in su
way that the cell faces that merge at that corner are upstream cell faces coincident
the boundaries of the enclosure. The radiation intensity at those faces is available frorn
boundary conditions, enabling the calculation of the radiation intensity at the first cont
volume using Eqg. (13). The solution proceeds in the direction of orientation of the directi
cosines, visiting all the control volumes. Then, similar calculations are performed for all t
other directions. After all the directions have been treated, the radiation intensities lea
the boundary surfaces are updated using the boundary conditions, Eq. (4). The itere
process continues until the convergence criterion has been satisfied.

If the temperature field is not known, it must be determined from the simultanec
solution of the energy conservation equation and the radiative transfer equation. In
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problems addressed here it is assumed that radiation is the dominant mode of heat trar
the others are neglected. Therefore, conservation of energy may be expressed as [23]

V.-g=k(@eT*=G), (15)

whereq is the radiative heat flux vector, is the temperature of the medium, amds the
Stefan—Boltzmann constant. The incident radiati®nis given by

A

M
G= [ lde~) wll (16)
j=1

In the case of radiative equilibrium (i.eV, - g = 0), the temperature field is updated at
every iteration from Egs. (15) and (16).

2.6. Computational Details

In the case of a transparent medium, the convergence criterion employed in this w
was

Zi Zj Zk Zr’\r/1|=1|( ir,r},k)n B ( ir,nj.,k)nil|
S e ()"

< é, a7

wheren andn — 1 denote the present and the previous iterations, respectively, and
summations extend over all the control volumes and directions. The prescribed toléranc
was set to 168 in the two-dimensional problems and to<210° in the three-dimensional

problem.
In the case of a participating medium, the convergence criterion was
|Gn _ Gr‘l—1|

The maximum over all the control volumes of the quantity within the braces must decre:
below a tolerance taken as 10

It was found that during the iterative solution procedure, switching between the St
and the HR scheme often occurs, causing convergence difficulties. To prevent this, if
given cell face the SHR scheme does not satisfy the boundedness criterion with respe
the neighboring grid nodes more thagc times during the iterative process, then the HR
scheme is used at that cell face in all the following iterations. However, the SHR schem
still used at other cell faces where thg: limit is not attained. Several tests were performec
to find the optimum value afigc, and it was found thatgc = 2 orngc = 3 is usually the
best choice.

The use of the SHR scheme instead of the HR one generally degrades the converg
rate. Therefore, it was found useful to employ the HR scheme until the error meas
considered in the convergence criterion decreases to a prescribed level, typica)igrid
then to switch to the SHR scheme.
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It was also verified, as reported in the next section, that the gain in accuracy is |
ited if the SHR scheme is used instead of the HR one for directions that make a sr
angle with a coordinate axis. This has a well-known counterpart in CFD, where the |
wind scheme may only originate significant false diffusion if the direction of the veloci
is oblique to the grid lines. Therefore, the SHR scheme was used in two-dimensio
problems ifz/6 <tg=t(|n™|/|€™|) <7 /3, while the HR scheme was employed other-
wise. In three-dimensions, the SHR scheme was used only if one or more of the an
tg~ (In™I/1E™D. tg~(|u™l/1E™D), andtg~(|u™|/|n™|) lie in the rangef /6, 7/3].

Finally, to achieve a converged solution, it was often necessary to underrelax the
ferred correction term given by Eq. (14). This is required for both the HR and the St
schemes, although the SHR schemes generally require stronger underrelaxation. Alth
a converged solution has been obtained in the problems tested, there is no guarante
convergence will be obtained for all problems.

3. RESULTS AND DISCUSSION

The results presented and discussed in this section are organized into three subsec
according to the radiative properties of the medium. First, two- and three-dimensional
closures with a transparent medium are studied. Second, the medium is assumed to
and absorb, but no scattering is considered. The temperature of the medium is presc
or, alternatively, radiative equilibrium is assumed. Finally, an emitting—absorbing and sc
tering medium is studied, including isotropic and anisotropic scattering. In all problen
the enclosure has one hot wall, while the others walls are cold. This causes a discontir
of the boundary radiation intensity at the edges of the hot wall, which propagates to
radiation intensity field within the enclosure. In such cases, skewed discretization sche
are expected to be more accurate. However, if the radiation intensity along the bot
ary is either constant or varies smoothly, then no major advantage of skewed schem
expected.

3.1. Transparent Medium

The first problem consists of a two-dimensional square enclosure (dimehsienk y =

1) with atransparent medium, black wallg, = 1 atthe bottom wall, ant},,, = 0 elsewhere.

A single direction of propagation of radiation intensity with = 0.5 and,™ = +/3/2 and

a 6 x 6 uniform grid are considered. The grid and the direction were chosen to enabl
comparison between our results and those reported in [13]. The exact solution is g
by 1™ =1 below the dashed lines in Fig. 2, ahtl =0 above those lines. The radiation
intensity is discontinuous along the dashed lines, as a result of the discontinuity betw
the bottom and left boundary wall intensities.

Figure 2 shows the radiation intensity field computed using the step, diamond, SMAI
and skew SMART schemes, as well as the exponential high-order schemes use
Refs. [12, 13]. The solutions obtained with the diamond and the exponential high-or
schemes have been taken from [13]. The step scheme solution is bounded but exhibits s
numerical smearing, as expected, while the diamond scheme solution presents unphy
oscillations and overshoots, but substantially reduces the numerical smearing. The c
four solutions given in Fig. 2 completely remove oscillations, undershoots, and overshc
and present only moderate numerical smearing.
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FIG.2. Computed radiation intensity fields in a two-dimensional square enclosure with a transparent med
(€™ = 0.5, ™ = +/3/2, 6 x 6 uniform grid). The exact radiation intensity is 1 below the dashed lines and 0 abo
them. (a) Step scheme; (b) diamond scheme (results taken from Ref. [13]); (c) exponential high-order sck
(results taken from Ref. [13]); (d) exponential high-order scheme (results taken from Ref. [13]); (€) SMART; a
(f) skew SMART.
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TABLE |
Average Absolute Error of Radiation Intensity in Direction £€™=0.5,
1™ =+/3/2in a Two-Dimensional Square Enclosure with a Transparent
Medium (6 x 6 Uniform Grid)

Scheme EN ED
Step 0.1998 0.1540
Diamond 0.1224  0.0837
Exponential high-order scheme [12] 0.0943 0.0553

Exponential high-order scheme with linear interpolation {13]0.0943  0.0608
Exponential high-order scheme with cubic interpolation {13] 0.0843  0.0564

CLAM 0.1019 0.0559

MUSCL 0.0958 0.0499
SMART 0.0904 0.0445
Skew CLAM 0.0797 0.0351
Skew MUSCL 0.0741  0.0302
Skew SMART 0.0724  0.0283

@ Radiation intensity field taken from Ref. [13].

The average absolute error of the radiation intensity in directioray be used to quantify
the solution accuracy. It is given by

| J
Zi:l Zj=1||ir,nj - Iir,nj,exaclJ
I xJ ’

E = (19)

wherel and J are the number of grid nodes alomgand y directions, respectively. A
relative error could not be used here, since the radiation intensity may be zero. Altho
the radiation intensity is always greater than zero in practical problems, in the fictitious ¢
of a cold wall (1, = 0) and a transparent medium, the radiation intensity at an arbitra
point of the enclosure is zero for directions leaving from the cold wall. The exact val
of the radiation intensity at a control volume may be taken either as the grid node va
or as the mean value over that control volume, yielding two different average absol
errors, denoted bf] andE[%, respectively. These are shown in Table | for several spati:
discretization schemes. In addition to the schemes that produce the solutions displaye
Fig. 2, Table lincludes results for the exponential high-order scheme with cubic interpolat
of the upstream radiation intensity [13], the CLAM, MUSCL, skew CLAM, and skev
MUSCL schemes. The average errors of the exponential schemes are comparable to
of the HR schemes and significantly lower than that of the diamond scheme. The
scheme is by far the least accurate scheme, while the SHR schemes are the most ac
ones. The SMART scheme is slightly more accurate than the MUSCL, and this is sligt
more accurate than the CLAM. Thisis also true for the SHR version of these schemes. Tl
conclusions do not depend on the way,;was obtained (i.e., on wheth&{ or E[} is
considered). Therefore, only] is used from now on, and the subscript 1 is removed fo
conciseness.

The predicted radiation intensity along the vertical symmetry ptare0.5, for direction
EM=yn" = 0.5774 and a 1k 11 uniform grid is shown in Fig. 3. The numerical smearing
is very significant for the step scheme, as expected, since this direction makes an ang
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FIG. 3. Radiation intensity profile along the vertical symmetry plane of a two-dimensional square enclost
with a transparent mediung T = n™ = 0.5774, 11x 11 uniform grid).

45° with the grid lines. The HR schemes perform much better, while the SHR schen
further approach the sharp discontinuity of the exact solution-at0.5. All the HR and
SHR schemes are bounded and oscillation free. This is best seen in Fig. 4, where th
dimensional perspectives of the radiation intensity field are displayed. The results of
CLAM and MUSCL schemes (HR and SHR versions) are not shown, since they are v
close to the results of the SMART scheme. These results are identical to those obtaine
the classical CFD problem of convection of a step profile in a prescribed oblique veloc
field.

The influence of the grid size on the average absolute error of the radiation intensity fi
in directioné™ = n™ =0.5774 is shown in Fig. 5. The error decreases with grid refinemen
as expected, but the rate of convergence is low. Although the HR schemes are sec
(CLAM, MUSCL) or third-order (SMART) accurate, the observed rate of convergenc
only marginally exceeds that of the first-order accurate step scheme. This is related tc
discontinuity in the radiation intensity field, which prevents the schemes from behavi
according to their formal rate of convergence. Other reasons may be responsible for
degradation of the rate of convergence, as discussed in [21]. These include the limi
required to prevent oscillations, the propagation to all downstream locations of local err
that may arise when a lower order approximation is required to enforce boundedness,
the unalignment of the stencils with respect to the ordinate directions. The last reaso
eliminated in the SHR schemes, which show a faster rate of convergence than the
schemes.

Up to now attention has been focused on the radiation intensity for a single direction
all the directions are taken into account, an average absolute error of the radiation inter
field may be defined as

M
Em
E = % (20)

The influence of the grid size and order of quadrature on the average absolute,earer
shown in Fig. 6. In the first case, thg Quadrature was used (Fig. 6a), while in the last one
40 x 40 uniform grid was employed (Fig. 6b). Although the emphasis of this work is on tt
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FIG. 4. Radiation intensity field in a two-dimensional square enclosure with a transparent medium (
n™ = 0.5774, 11x 11 uniform grid). (a) Exact solution; (b) step scheme; (c) SMART; and (d) skew SMART.
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FIG.5. Average absolute error of the radiation intensity in direc§@n= n™ = 0.5774 as a function of grid

size.



426 P. J. COELHO

Average Error ( Ep)

Number of Grid Nodes (1)

0.10
0.08 1 b) /— Step
] \_f‘
—~  0.06 1
ur ]
~ HR Schemes
5 6od{ ]/ —
Ltl _______
[0
o
g
2 0.2
<C
001 1 1 1 I

1
4 6 8 10 12
Order of Quadrature (N)

FIG. 6. Average absolute error of the radiation intensity field in a two-dimensional square enclosure wit
transparent medium as a function of grid size (a) and order of quadrature (b).

spatial discretization rather than on the angular discretization, it is interesting to investig
whether or notthe SHR schemes behave like the HR schemes when the angular discretiz
is refined. In fact, the superior accuracy of the SHR over the HR schemes is enhanced v
the angle between the direction of propagation of radiation and the coordinate lines, wt
depends on the order of quadrature, approaches a maximum. The results show tha
relative behavior of the different spatial discretization schemes is independent of the ¢
size and order of quadrature. The error of the step scheme exceeds that of the other sch
by a factor larger than 2, while the SHR schemes are the most accurate ones. The ratio ¢
error of the step scheme to the error of the other schemes increases with the grid refiner
This shows that the step scheme has the lowest rate of convergence, as expected. Hov
all the other schemes exhibit similar rates of convergence, contrary to what was obsel
for directiont™ =" =0.5774.

To clarify these trends, the average absolute errors for every direction are summar
in Table Il for a 10x 10 uniform grid and a §quadrature. Similar conclusions would be
obtained from other grids or quadratures. The results of the MUSCL and SMART sche
are not shown, since they perform similarly to the CLAM scheme. Although there a
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TABLE Il
Average Absolute Error of Radiation Intensity in a Two-Dimensional Square
Enclosure with a Transparent Medium (10 x 10 grid, S Quadrature)

Er
Skew CLAM
m gm n™ Step CLAM Skew CLAM all directions
1 0.9796 0.1423 0.06607 0.03795 0.03795 0.03743
2 0.8040 0.1423 0.07516 0.04184 0.04184 0.04162
3 0.8040 0.5774 0.17820 0.08197 0.05914 0.05914
4 0.5774 0.1423 0.09209 0.04809 0.04809 0.04508
5 0.5774 0.5774 0.14668 0.04790 0.00955 0.00955

10 directions per octant, it is sufficient to look at the results of the directions listed
Table Il, because in this problem the errors for directidnsf and ¢, &) are equal. The
error form = 5, the direction that makes an angle of #46th the coordinate lines, decreases
by a factor of 5 when the SHR scheme is used instead of the HR scheme. The correspor
error form = 3 decreases only by a factor of 1.4, while the errors for the remaining dire
tions do not change, since the angles they make with the grid lines do not lie in the ra
[7/6, 7/3]; i.e., the HR scheme is active. The errors that would be obtained if the St
scheme were always used (i.e., if the ranggd], = /3] were extended to [Or/2]), are listed

in the last column of Table Il. The marginal decrease in error observed for directions 1
and 4 demonstrates that it is only worth using the skewed schegie idin™|/|1£™)) is rela-
tively close tar /4, as itwas here. The error of the SHR scheme in direactien5(¢™ = n™)

is much smaller than that in the other directions. Therefore, the average absolute errc
the SHR schemes is dominated by the errors in the other directions, and so the rat
convergence is similar to that of the HR schemes.

The next test problem is similar to the first one, but the geometry is a three-dimensic
cubic enclosurel(y = Ly =L, =1). The walls are black witl,, =1 at the bottom wall
and I, = 0 elsewhere, and the medium is transparent. The average absolute error of
radiation intensity field, given by Eqg. (20), as a function of grid size is shown in Fig. 7. Tl
Sg quadrature was used. The results are qualitatively identical to those presented in Fi
for the two-dimensional enclosure.

3.2. Emitting—Absorbing, Nonscattering Medium

The two-dimensional enclosure studied in the previous section is considered again, !
the same boundary conditions, but containing an emitting—absorbing, nonscattering mec
with an emissive power of unityl§,, = 1/7) and an absorption coefficient of 1.0. In the
case of participating media it is more useful to evaluate the solution accuracy using
incident radiation rather than the radiation intensity. Moreover, since the incident radiat
is always greater than zero, relative errors may be used. Therefore, an average relative
of the incident radiation was taken to quantify the solution accuracy [21]:

E 1 Z -1 |G Gexact
i=124j=

E Gexact ) 21
G = <] (21)




428

P. J. COELHO

0.025
0,020 -
ur ]
— 1 Ste|
5 0015 VR
w0 ]
] E HR Schemes
2 0.010 —— CLAM
5 i NS MUSCL
z ] OREA. SMART
0.005 - SHR Schemes
1 — cLAM
11— MUSCL
1 SMART
0.000 - — —T — .
0 10 20 30 40
Number of Grid Nodes (I)

FIG. 7. Average absolute error of

the radiation intensity field in a three-dimensional cubic enclosure witl

transparent medium as a function of grid size.

Here,GexactiS taken from the exact solution of the discrete ordinate equations (Eg. (3)),
the exact solution of the radiative transfer equation (Eq. (
d error is a consequence of the spatial discretization errot
. The results presented below were obtained using4®40
ure, except in the cases where the influence of grid size
he influence of the spatial discretization scheme and grid
on the solution erroEg is shown in Fig. 8. The results are consistent with those reporte
[ the SHR schemes perform similarly, and are more accu
than the correspondent HR schemes. The accuracy of the SHR schemesxnl8 46id

is comparable to that of the step scheme in &880 grid (notice that the errors of the step

ported in [29], rather than from
This ensures that the compute
is not influenced by ray effects
uniform grid and the $quadrat
qguadrature are investigated. T

for the transparent medium. Al

scheme marked in Fig. 8 have

been divided by a factor of 2).
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FIG. 9. Average errors in a two-dimensional square enclosure with an emitting—absorbing medium a
function of the order of quadrature. (a) Average relative error of the incident radi&ior{p) Average absolute
error of the radiation intensity field, .

The influence of the order of quadrature on the incident radiation &gois shown
in Fig. 9a. Only the results of the CLAM and skew CLAM schemes are shown, but th
are very close to the results of the other HR and SHR schemes. The skew CLAM is m
accurate than the CLAM forgand § quadratures, as expected. However, the results «
the two schemes are similar i, SS;o, or S, quadratures are used. This may be explainel
by a compensation of errors in the calculation of the radiation intensity. In fact, all t
ordinate directions contribute to the incident radiation, according to Eq. (16). If the radiat
intensity for some directions is overestimated while for others it is underestimated, the
opposite contributions may cancel each other out, yielding an accurate value of the inci
radiation. This explanation is supported by the average absolute error of the radia
intensity,E, , shown in Fig. 9b, which is always lower for the SHR scheme, despite the orc
of quadrature.

The influence of the absorption coefficient of the medium is shown in Fig. 10. In ti
case of an optically thick medium, the teri88 V andg V are the dominant ones on the
numerator and denominator of Eq. (13), respectively. The ratio of these two terms is ec
to I, because the medium does not scatter. This explains why the average incident radi



430 P.J. COELHO

0.04

0.03

0.02 4

Average Error (Eg)

0.01

0.00 ————————————
0.1 1.0 10

Absorption Coefficient

FIG. 10. Average relative error of the incident radiation in a two-dimensional square enclosure with
emitting—absorbing medium as a function of the absorption coefficient of the medium.

error for optically thick media is small, approximately constant, and weakly depende
on the spatial discretization scheme. Conversely, if the medium is optically thin, those t
terms are small, and the spatial discretization scheme employed in the calculation of the
face intensities becomes important. Therefore, the average error of the incident radia
is larger than in the case of an optically thin medium, and the higher accuracy of the S
scheme compared to the HR scheme becomes evident.

Figure 11 shows the average error of the radiation intensity field as a function of 1
emissivity of the boundary surface. In this case there is no analytical solution availabls
& < 1. ThereforeGexactWas approximated by the numerical solution obtained from a ver
fine grid (320x 320 grid nodes) and the CLAM scheme. The results showBhRahcreases
with the increase in the boundary emissivity. In facts ihcreases, so does the radiation
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° ]
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————
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FIG. 11. Average relative error of the incident radiation in a two-dimensional square enclosure with
emitting—absorbing medium as a function of the emissivity of the boundary surface.



SCHEMES FOR DISCRETE ORDINATES METHOD 431

250
] A O Skew CLAM
] [ Skew MUSCL
200 - A g A Skew SMART
] A
] S
150 4 a
ko ] © o n
c ] o o
100 7 © ¢
50
0

AL DL R LR R B B
0.0 02 04 0.6 0.8 1.0
Underrelaxation Factor

FIG. 12. Number of iterations required for convergence as a function of the underrelaxation factor.

intensity at the bottom surface. Therefore, the discontinuity of the radiation intensity
the bottom left and right corners, which is the main cause of the spatial discretizat
errors, becomes sharper. The skew CLAM results are more accurate than the CLAM o
particularly for high boundary surface emissivities, since the B8¢CLAM) / Eg(skew
CLAM) slightly increases with the increasedn

Although the SHR schemes have consistently proved to be more accurate than the
ones, they also have some drawbacks. Their implementation is more tedious, they
more sensitive to the underrelaxation factor, and they are more computationally demanc
particularly for fine grids. The sensitivity to the underrelaxation factor isillustrated in Fig. 1
Convergence is faster with a high underrelaxation factor, but it is possible that converge
is not achieved if that factor is too high. In this test case, the highest underrelaxation fac
that enable convergence were 1, 0.8, and 0.6 for the skew CLAM, skew MUSCL, and s}
SMART schemes, respectively. This behavior is the expected one, and similar to tha
the HR schemes. The number of iterationg,, and the central processing unit (CPU)
time, t, required for convergence are shown in Fig. 13. The number of iterations increa
moderately with grid size for the HR schemes, but that increase is much more signific
for the SHR schemes. Therefore, if the grid is refined, the computational requireme
of the SHR schemes increase due to both the number of grid nodes and the numb:
iterations. Fortunately, since the SHR schemes are quite accurate, there is no need t
very fine grids. Whether or not the higher accuracy of the SHR schemes over the
schemes compensates for their higher computational requirements is likely to be prok
dependent. This is also true for the different HR and SHR schemes; i.e., the SMART sch
is generally more accurate than the MUSCL scheme, and this is generally more accL
than the CLAM scheme, but the higher accuracy is associated with more CPU time requ
for convergence.

The computational cost, or economy, of the different schemes may be evaluated forag
problem by considering equal accuracy as a basis for determining economy [16]. The ave
relative error of the incident radiation, taken as a measure of accuracy, is plotted in Fig. 1
a function of CPU time for the different discretization schemes and meshes. This allows
comparison of the accuracy of the different schemes for a given amount of CPU time, as!
asthe estimation of the CPU time required to attain a given level of accuracy. Figure 14 sh
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FIG. 13. (a) Number of iterations and (b) CPU time(s) required for convergence.
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FIG. 14. Average relative error of the incident radiation as a function of the CPU time for a two-dimension
square enclosure with an emitting—absorbing medium.
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FIG. 15. Average relative error of the incident radiation in a two-dimensional square enclosure with
emitting—absorbing medium in radiative equilibrium.

that the HR schemes are slightly more economical than the SHR schemes for this prob
The STEP scheme is also relatively economical in this problem, because all the walls of
enclosure are black, the temperature of the medium is prescribed, and there is no scatte
Therefore, it does not require an iterative procedure, unlike the HR and SHR schemes
The same geometrical configuration and boundary conditions are considered in the

problem, but radiative equilibrium is assumed. Hence, the energy equation (Eq. (15)
solved together with the radiative transfer equation. Since no exact solution is availa
Gexact IS approximated as above. Thg Quadrature is used again in this problem. The
average relative error of the incident radiation as a function of the grid size is sho
in Fig. 15. The results are qualitatively similar to those shown in Fig. 8, concerning
medium with prescribed emissive power. The errors are larger in the present case bec
the temperature of the medium is obtained from the solution of the energy equation,

so errors in the temperature field influence the incident radiation. The gain in accur
obtained by using the SHR schemes instead of the HR ones is also larger in this prob
The rate of convergence of the SHR schemes seems slower than that of the HR sche
contrary to what would be expected. However, this may be due to the approximation u
to estimateéGeyac: Figure 16 shows the number of iterations and the CPU time required f
convergence as a function of the grid size. It does not reveal significant differences betw
the cases of radiative equilibrium and prescribed emissive power. Figure 17 shows th:
this test case, the computational cost to achieve a given level of accuracy is similar for
HR and SHR schemes, while the STEP scheme is much less economical, as expectec

3.3. Emitting—Absorbing—Scattering Medium

The problem studied in Section 3.2 with prescribed emissive power of the mediurnr
considered again. But now the medium scatters isotropically. As in the previous section,
present calculations were carried out using a0 uniform grid and the $Squadrature,
and Geyact Was approximated by the CLAM solution in a 3%@20 uniform grid. The
average relative error of the incident radiation as a function of the scattering albed:
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0.06 -
N —%—step
N O clam
—_ 0.05 R O muscl
O] E A smart
w 0.04 1 ® skew clam
5 I m  skew muscl
= N A skew smart
w  0.03 v
@ h
) N
© b
g 002 oo a
< E Od]-‘
0.01 +
] oM o,
O 1 T T T FrIrhT T T TTTT0007 T T 1117 T T TT T
0.1 1 10 100 1000

t(s)
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square enclosure with an emitting—absorbing medium in radiative equilibrium.



SCHEMES FOR DISCRETE ORDINATES METHOD 435

0.008
0.006 -

0.004

Average Error (Eg)

0.002

Skew CLAM

0.000 ~+———T——T————T——
00 02 04 06 08 10

Scattering Albedo

FIG. 18. Average relative error of the incident radiation in a two-dimensional square enclosure with
emitting—absorbing, isotropically scattering medium.

shown in Fig. 18. The scattering albeda, is the ratio of the scattering to the extinction
coefficients { = o5/8). The absorption coefficient was maintained constant and equal
1.0, while the scattering coefficient was allowed to change. The results show that the er
are largest for low or high values af The skew CLAM scheme is more accurate than the
CLAM scheme, as in the case of nonscattering and transparent media. The gain in acct
(40-60%) is marginally influenced by the scattering albedo. Other SHR and HR schel
perform similarly.

Finally, the medium was assumed to scatter anisotropically. The phase functions F1,
B1, and B2 described in [30] were considered. The results summarized in Table 11l rev
that the gain in accuracy by using the skew CLAM scheme is substantial (more than 4(
for all the phase functions.

Nowadays, the simulation of reactive flows in geometries of relevance in industry
often carried out using unstructured meshes. Although the application of SHR schel
to unstructured meshes is not addressed in this work, no difficulties are foreseen in
application. If Cartesian coordinates are used, the upstream, central, and downstt
grid nodes required in HR schemes are readily available, while SHR schemes requir

TABLE 11l
Average Relative Error of the Incident Radiation in a Two-
Dimensional Square Enclosure with an Emitting—Absorbing,
Anisotropically Scattering Medium

Ec
Phase functioh CLAM Skew CLAM
F1 0.00382 0.00218
F2 0.00291 0.00208
Bl 0.00296 0.00207
B2 0.00302 0.00208

2 See Ref. [30].
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interpolation, as illustrated in Fig. 1. However, in the case of unstructured grids, an inter
lation is required for both HR and SHR schemes. Therefore, it is tempting to speculate f
the advantage of SHR over HR schemes might be more obvious in unstructured grids, bu
present lack of evidence recommends simply stating that this issue should be investig
in future work.

4. CONCLUSION

Numerical smearing is one of the main sources of error in the discrete ordinates met
for the solution of the radiative transfer equation. This error is particularly relevant if tt
step scheme is employed. Bounded high-order resolution schemes substantially deci
the numerical smearing. However, the stencil used in the spatial discretization is alig
with the coordinate axes. In this work, bounded skew high-order resolution schemes h
been employed which use a stencil aligned with the direction of the propagation of rac
tion. Several radiative transfer problems in enclosures were solved. Both transparent
participating media were considered, including nonscattering, isotropically scattering, :
anisotropically scattering media. In all cases, one of the walls of the enclosure was
and the others were cold. It was found that skewed schemes yield more accurate res
especially for the radiation intensity along directions oblique to the grid lines, and f
optically thin media. The skewed schemes are more computationally demanding, part
larly for fine grids. However, these are not generally required due to the accuracy of
schemes. Whether the superior accuracy of skewed schemes compensates for their |
computational requirements is likely to be problem dependent.
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