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The discrete ordinates method for the solution of the radiative heat transfer equa-
tion suffers from two main shortcomings, namely ray effects and numerical smearing.
Spatial discretization, which is the cause of numerical smearing, constitutes the sub-
ject of the present work. Bounded skew high-order resolution schemes are applied
to the discrete ordinate equations and compared with standard bounded high-order
resolution schemes (CLAM, MUSCL, and SMART), as well as with the step scheme.
Calculations are performed for two- and three-dimensional enclosures with transpar-
ent, emitting–absorbing, and emitting–absorbing–scattering media. One of the walls
of the enclosure is hot, while the others are cold. The results demonstrate that the
bounded skew high-order schemes are more accurate than the bounded high-order
ones, regardless of the radiative properties of the medium. The improved accuracy is
more significant for the radiation intensity along directions oblique to the coordinate
lines, but it is also observed for the incident radiation. The difference between the
results of the skewed and the standard schemes is attenuated as the optical thickness
of the medium increases. A drawback of the skewed schemes is their higher compu-
tational requirements, associated with an increased number of iterations required for
convergence. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Radiative heat transfer plays an important role in many relevant engineering problems,
including, for example, combustion applications (fires, fossil fuel fired utility boilers, rocket
nozzles and engines, etc.), solar energy systems, laser materials processing, and satellite and
other space systems. Several numerical solution methods have been developed for radiative
heat transfer problems, including the zone, the Monte Carlo, the spherical harmonics, the
discrete transfer, the discrete ordinates, and the finite-volume methods [1]. Although the
zone and the Monte Carlo methods are often considered the most accurate ones, their
computational requirements are also the highest, and therefore none of the methods currently
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available can be considered the best one for all problems. The discrete ordinates method
[2, 3], which is employed in the present work, has emerged in the last decade as one of the
most popular methods, providing a good compromise between accuracy and computational
economy.

The discrete ordinates method is based on the numerical solution of the radiative trans-
fer equation along a set of discrete directions spanning the total solid angle range of 4π ,
replacing the integrals over direction by numerical quadratures. Two major shortcomings
of this method that may strongly affect the solution accuracy are the ray effect and nu-
merical smearing, which have been discussed in Refs. [4, 5]. The ray effect is associated
with the angular discretization and arises from the approximation of the continuous angular
variation of the radiation intensity field by a discrete set of radiation intensities in speci-
fied ordinate directions. It is independent of the spatial discretization. Ray effects may be
mitigated by refining the angular discretization or by using the modified discrete ordinates
method [6]. The numerical smearing, also referred to in the literature as numerical scatter-
ing or false scattering, is the counterpart of false diffusion in computational fluid dynamics
(CFD). In fact, the radiative transfer equation can be interpreted as the convection of a
scalar (the radiation intensity) in a prescribed velocity field (characterized by the direction
cosines of the direction of propagation of radiation). There is a source term in the case
of a participating medium, but no diffusion term. The numerical smearing is associated
with the spatial discretization scheme, and it is independent of the angular discretization.
It arises in multidimensional problems when the radiation beams are not aligned with the
grid lines.

An evaluation of spatial discretization schemes employed in the discrete ordinates method
has been presented in [7]. The two most widely used ones are the step and the diamond
schemes, which are the counterparts respectively, of the upwind and the central differencing
schemes in CFD. The great advantage of the step scheme is that physically unrealistic
negative radiation intensities are never predicted. However, excessive numerical smearing
is introduced by this scheme. The diamond scheme reduces the numerical smearing, but it
may yield overshoots and undershoots of the boundary intensities, and negative intensities
may appear. These negative intensities may be eliminated using the negative intensity fix-
up procedure proposed in [2], which sets them to zero. However, spatially oscillating,
physically unrealistic intensities may still occur. This problem is shared by the positive
scheme [8], which ensures positive radiation intensities, but not necessarily bounded ones.
Negative radiation intensities may also be prevented by using a variable weight scheme [9]
that combines the step and the diamond schemes. The diamond scheme is used if negative
intensities are not found. Otherwise, a weighted average of the two schemes is used, and
the weight is selected by trial and error to enforce positive values. The exponential scheme
is potentially more accurate in one-dimensional computations, but not in multidimensional
ones, where unbounded solutions may occur, as discussed in [7].

All the spatial discretization schemes mentioned above treat the radiation across a control
volume face as locally one dimensional. This means that the radiation intensity at a cell face
is calculated from the radiation intensity at points that lie along the normal to the cell face.
Other schemes have been proposed to account for the multidimensional nature of radiation
(i.e., schemes that calculate the radiation intensity at a cell face based on the radiation
intensity at points that lie along the direction of propagation of radiation). The simplest
of these schemes is the modified exponential scheme [10], which integrates the radiative
transfer equation along every direction assuming a constant source term. The upstream
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location must be chosen carefully to avoid negative nodal intensities and wiggles. A similar
scheme, which differs only in the evaluation of the upstream intensity, is presented in
Ref. [11]. An improved high-order exponential scheme has been proposed in the formulation
of the finite-volume method for radiative heat transfer [12]. The finite-volume method for
radiative transfer has many similarities to the discrete ordinates method, and so this scheme is
applicable to both methods. The interpolation of the upstream intensity from grid node values
must be done carefully to ensure conservation. Similar high-order exponential schemes
have been employed in [13, 14]. These authors use the discrete ordinates interpolation
method, a modification of the standard discrete ordinates method which does not use the
control-volume formulation. This allows greater flexibility in the calculation of the upstream
radiation intensity, but does not ensure conservation of radiative energy. All these skewed
schemes are potentially more accurate than the locally one-dimensional ones mentioned
before. A skewed upwinding procedure has recently been proposed [15] in the framework
of the control-volume finite-element method using triangular control volumes for two-
dimensional problems. The scheme is stable and economical and it inherently precludes the
possibility of computing negative coefficients in the discretized algebraic equations (i.e.,
negative intensities do not appear). It is more accurate than the step scheme but is still
first-order accurate.

Bounded high-order resolution (HR) differencing schemes initially developed in the CFD
community have also been applied to solve the radiative transfer equation using the discrete
ordinates method. The SMART scheme [16] has been employed in [17], and the MINMOD
[18], MUSCL [19], CLAM [20], and SMART schemes have been used in [21]. As in
CFD, it has been shown that the radiation intensity field computed using these schemes is
much more accurate than that obtained using the step scheme, the diamond scheme, and its
modifications.

The HR schemes treat the radiation across a control-volume face as locally one-dimensi-
onal. Jessee and Fiveland [21] have pointed out that one of the most promising spatial
discretization methods is probably a HR scheme in which the interpolation stencil is aligned
with the ordinate directions. Such bounded skew high-order resolution (SHR) schemes have
recently been developed for CFD [22]. The objective of this work is to demonstrate the
application of these SHR schemes to the discrete ordinates method and to investigate their
performance. We consider only transparent or gray media, but the extension to nongray
media is straightforward.

The discrete ordinates method is briefly described in the next section, and the discretiza-
tion schemes employed in this work are presented. Several test problems are then solved for
two- and three-dimensional enclosures with transparent, emitting–absorbing or emitting–
absorbing–scattering media. The main conclusions are drawn in the last section.

2. THE DISCRETE ORDINATES METHOD

2.1. The Radiative Transfer Equation

The radiative transfer equation may be written as follows for an emitting–absorbing–
scattering gray medium [23]:

d I (s)
ds
= −β I (s)+ κ Ib + σs

4π

∫
4π

I (s′)φ(s′, s) dÄ′. (1)
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In this equation,I (s) is the radiation intensity in directions; Ib is the blackbody radiation in-
tensity,κ,β, andσs are the absorption, extinction, and scattering coefficients of the medium,
respectively; andφ(s′, s) is the scattering-phase function. The ratioφ(s′, s)/4π represents
the probability that radiation propagating in directions′ and confined within solid angle
dÄ′ is scattered through the angles′ · s into the directionsconfined within solid angledÄ.

The boundary condition for a gray surface that emits and reflects diffusely, given in
Ref. [23], is

Iw(s) = ε Ibw + ρ

π

∫
n·s′<0

I (s′)|n · s′| dÄ′, (2)

where Iw(s) is the radiation intensity leaving the boundary surface,I (s′) is the radiation
intensity in thes′ direction arriving at that surface,Ibw is the blackbody radiation intensity
at the temperature of the boundary surface,ε is the surface emissivity,ρ is the surface
reflectivity, andn is the outward unit vector normal to the surface.

2.2. The Discrete Ordinate Equations

In the discrete ordinates method, the radiative transfer equation is replaced by a discrete
set ofM coupled differential equations that describe the radiation intensity field alongM
directions. Integrals over solid angles are replaced by a quadrature of orderM , yielding

d I m

ds
= −β I m + κ Ib + σs

4π

M∑
j=1

I jφ(sj , sm)w j , (3)

where the superscriptm denotes themth direction andw j is the quadrature weight of
the j th direction. In the present work, level symmetric SN quadratures were used (M =
N(N + 2)). The S4, S6, and S8 quadratures satisfy sequential odd moments, and the S10

and S12 quadratures satisfy sequential even moments [24].
The boundary condition expressed by Eq. (2) is discretized as

I m
w = ε Ibw + ρ

π

∑
j

(n·sj<0)

I j |n · sj |w j , n · sm > 0. (4)

Spatial discretization of the discrete ordinate equations is carried out using the finite-volume
approach. Equation (3) is integrated over a typical control volume, and the Gauss divergence
theorem is applied. The terms on the right-hand side of Eq. (3) are assumed to be constant
over the control volume. The in-scattering term (last one of Eq. (3)) is split into two parts,
one that accounts for the contribution of themth direction, which is treated implicitly,
and the other accounting for all the other directions, which is treated explicitly [10]. For a
Cartesian coordinate system and for a directionm with direction cosinesξm, ηm, andµm,
this yields the discretized equations

|ξm|Ax
(
I m
x,out− I m

x,in

)+ |ηm|Ay
(
I m

y,out− I m
y,in

)+ |µm|Az
(
I m
z,out− I m

z,in

)
=
(
−β I m

P +
σs

4π
I m

P φ(sm, sm)wm + Sm
P

)
V, (5)
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where

Sm
P = κ IbP + σs

4π

M∑
j=1
( j 6=m)

I j
Pφ(sj , sm)w j . (6)

In these equations,Ax, Ay, andAz are the areas of the control-volume faces normal to
thex, y, andz directions, respectively;V is the volume; andSm

P is the modified source term
of the radiative transfer equation at grid nodeP and for directionm. The subscripts of the
cell face intensities represent the direction (x, y, or z) and the upstream (in) or downstream
(out) face. Ifξm > 0, thenI m

x,in and I m
x,out are the intensities at the west and east cell faces,

respectively. Conversely, ifξm < 0, thenI m
x,in andI m

x,out are the intensities at the east and west
cell faces, respectively. The radiation intensities at the cell faces are unknowns and must
be related to radiation intensities at neighboring grid nodes. This may be accomplished by
using any of the schemes referred to in the introduction. Here, the family of SHR schemes
[22] is considered. To our knowledge, such schemes had never been applied before to the
radiative transfer equation. However, it is useful to first address the HR schemes, which
have also been used for comparison purposes.

2.3. Bounded High-Order Resolution Schemes

High-order resolution schemes express the dependent variable (the radiation intensity in
the present case) at a cell facef as a function of its values at three neighboring grid nodes,
two upstream and one downstream from the cell face. These are denoted by the subscripts U,
C, and D, as shown in Fig. 1, and are referred to as upstream, central, and downstream grid
nodes, respectively. Figure 1 represents two-dimensional control volumes for the sake of
clarity. The normalized variable formulation introduced by Leonard [25] has provided a good
framework for the development of HR schemes. This has been extended to nonuniform grids
in Ref. [26], where it is referred to as normalized variable and space formulation. According
to this formulation, a normalized radiation intensityĨ and a normalized coordinatẽx are
defined as

Ĩ = I − IU

I D − IU
, (7a)

x̃ = x − xU

xD − xU
. (7b)

FIG. 1. Typical control volume. The radiation intensity at the east cell face is computed from its values at
upstream (U), central (C), and downstream (D) grid nodes in HR schemes, and upstream (Us), central (Cs), and
downstream (Ds) points alongs direction in SHR schemes.
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Bounded schemes must satisfy a boundedness criterion originally described in [16]. This
criterion is directly applicable to the radiative transfer equation, as reported in Ref. [21],
and may be summarized as follows.

(i) The functionĨ f = f ( Ĩ C) is continuous.
(ii) Ĩ C ≤ Ĩ f ≤ 1 for 0≤ Ĩ C ≤ 1.
(iii) Ĩ f = Ĩ C for Ĩ C < 0 or Ĩ C > 1.

The step scheme in the normalized variable and space formulation is written asĨ f = Ĩ C.
Therefore, it is a bounded scheme but only first-order accurate. In fact, it has been shown that
a necessary and sufficient condition for a scheme to be second-order accurate is to be defined
by a functional relationship passing through the point(x̃C, x̃ f ), or (0.5, 0.75) for uniform
grids [16, 26]. If, in addition, the slope of the functional relationship at that point is equal
to x̃ f (x̃ f − 1)/[ x̃C(x̃C − 1)], or 0.75 for uniform grids, then the scheme is third-order
accurate [16, 26]. Many schemes satisfying the boundedness criterion have been developed
since this criterion was formulated (see, e.g., Ref. [27]). Among them, the CLAM [20],
MUSCL [19], and SMART schemes were used in the present work. These schemes are
given by the following functional relationships [26].
CLAM:

Ĩ f =
(
x̃2

C − x̃ f
)

x̃C(x̃C − 1)
Ĩ C + (x̃ f − x̃C)

x̃C(x̃C − 1)
Ĩ 2

C for 0< Ĩ C < 1, (8a)

Ĩ f = Ĩ C elsewhere. (8b)

MUSCL:

Ĩ f = 2x̃ f − x̃C

x̃C
Ĩ C for 0< Ĩ C< x̃C/2, (9a)

Ĩ f = Ĩ C + (x̃ f − x̃C) for x̃C/2≤ Ĩ C< 1+ x̃C − x̃ f , (9b)

Ĩ f = 1 for 1+ x̃C − x̃ f ≤ Ĩ C < 1, (9c)

Ĩ f = Ĩ C elsewhere. (9d)

SMART:

Ĩ f = x̃ f (1− 3x̃C + 2x̃ f )

x̃C(1− x̃C)
Ĩ C for 0< Ĩ C < x̃C/3, (10a)

Ĩ f = x̃ f (1− x̃ f )

x̃C(1− x̃C)
Ĩ C + x̃ f (x̃ f − x̃C)

(1− x̃C)
for

x̃C

3
≤ Ĩ C <

x̃C

x̃ f
(1+ x̃ f − x̃C), (10b)

Ĩ f = 1 for
x̃C

x̃ f
(1+ x̃ f − x̃C)≤ Ĩ C < 1, (10c)

Ĩ f = Ĩ C elsewhere. (10d)

It is worth pointing out that the results of the CLAM scheme are not necessarily bounded
for nonuniform grids. Although uniform grids were used in this work, the upstream grid
node (U) lies on the boundary surface for control volumes whose upstream cell face is on
the boundary surface. Therefore, the normalized coordinates at the downstream cell face are
x̃ f = 2/3 andx̃C = 1/3, which differ from the values at interior control volumes:x̃ f = 3/4
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andx̃C = 1/2. The functional relationship of the CLAM scheme in normalized coordinates
is a second-degree polynomial in the range 0< Ĩ C < 1, given by Eq. (8a). Therefore, since
Ĩ f (0)= 0 andĨ f (1) = 1, the boundedness criterion will be violated ifdĨ f /dĨ C = 0 in that
range (i.e., there will be points wherẽI f > 1). It is easy to verify that the derivative will
vanish at a point in the range 0< Ĩ C < 1 if the conditionx̃ f > x̃C(2− x̃C) holds. If the grid
is uniform, this condition is never verified for interior control volumes, and the scheme is
bounded. However, in a nonuniform grid, that condition may be verified and the boundedness
criterion violated. The condition is also verified ifx̃ f = 2/3 andx̃C = 1/3. However, it is
easy to enforce boundedness by settingĨ f = 1 if the second-degree polynomial in the range
0< Ĩ C < 1 yields a value greater than 1. This simple strategy was employed in all CLAM
and skew CLAM results reported here.

2.4. Bounded Skew High-Order Resolution Schemes

In SHR schemes, the dependent variable at a cell facef is also determined from its values
at three neighboring points, two upstream and one downstream from the cell face. However,
these are not grid nodes but points located at the intersection of the direction of propaga-
tion of radiation,s, with the grid lines, as shown in Fig. 1. The radiation intensity at these
points, denoted by Us, Cs, and Ds, is calculated from linear interpolation of the radiation
intensity at the neighboring grid nodes. For example, the radiation intensity at point Us in
Fig. 1 is computed from linear interpolation of the radiation intensity at grid nodes W≡U
and SW. In three-dimensional problems, a bilinear interpolation is used. A more accurate
interpolation scheme is likely to be needed to preserve the accuracy of schemes of order
greater than second. Among the schemes employed here, only the SMART scheme may
present such a high order of accuracy. However, this has not been observed in the calcula-
tions reported in [21], and therefore a linear interpolation was always used in the present
work.

The normalization of the radiation intensity and coordinate are based on the radiation
intensities and coordinates along thes direction:

Ĩ s = I − IUs

I Ds− IUs
, (11a)

s̃ = s− sUs

sDs− sUs
. (11b)

The normalized coordinatẽs is calculated from distances measured along directions, rather
than along the coordinate axes. The radiation intensity at cell facef is computed using
Eqs. (8), (9), or (10), with̃I s ands̃ substituted for̃I andx̃, respectively.

The boundedness criterion mentioned above ensures that the radiation intensity at the
cell face is bounded with respect to the interpolated radiation intensities at Us, Cs, and Ds.
However, it is not necessarily bounded with respect to the neighboring grid nodes of cell
face f (U, C, and D). Therefore, wiggles in the computed radiation field may still occur. To
avoid an unbounded solution it is necessary to proceed as follows [22]. First, the radiation
intensity at a cell face is calculated as described (i.e., from the SHR scheme applied to the
points lying along the direction of propagation of the radiation intensity). Then, it is checked
if the computed cell face radiation intensity satisfies the boundedness criterion with respect
to the neighboring grid nodes (U, C, and D). If it does, then no additional corrections are
needed; otherwise, the boundedness criterion is enforced using the HR scheme instead of
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the SHR one. At cell faces coincident with downstream boundaries, there is no downstream
grid node. Therefore, the step scheme was used in that case.

2.5. Solution Method

The SHR schemes were implemented using the deferred correction procedure [28]. Ac-
cording to this method, the downstream cell face radiation intensities are expressed as the
radiation intensities computed from the step scheme plus a correction equal to the difference
between the radiation intensities computed from the SHR scheme and the step scheme:

I m
f,out = I m

f,out,step+
(
I m

f,out,SHR− I m
f,out,step

)
. (12)

The contribution from the step scheme is treated implicitly while the correction term in
parenthesis is treated explicitly. Inserting Eq. (12) into Eq. (5), noting thatI m

f,out,step= I m
P ,

and solving forI m
P yields

I m
P =

|ξm|Ax I m
x,in + |ηm|Ay I m

y,in + |µm|Az I m
z,in + Sm

P V + Sm
dc

|ξm|Ax + |ηm|Ay + |µm|Az+
(
β − σs

4π
φ(sm, sm)wm

)
V
, (13)

where the deferred correction term,Sm
dc, is defined as

Sm
dc = |ξm|Ax

(
I m

P − I m
x,out

)+ |ηm|Ay
(
I m

P − I m
y,out

)+ |µm|Az
(
I m

P − I m
z,out

)
. (14)

All the cell face radiation intensities in Eqs. (13) and (14) are obtained from the SHR
scheme, and so no explicit reference to the scheme is included in the subscript. The values
of I m

x,out, I m
y,out, andI m

z,out are computed from Eq. (11) and Eqs. (8), (9), or (10), depending on
the specific SHR scheme employed, using the radiation intensities computed at the previous
iteration for downstream grid nodes, and at the current iteration for upstream grid nodes.
The values ofI m

x,in, I m
y,in, and I m

z,in are available either from the boundary conditions, if an
upstream cell face coincides with a boundary, or from the calculations performed for the
upstream control volumes.

In each iteration, and for each direction, the surface radiosities and the blackbody radiation
intensities are either known or guessed based on the values computed in the previous
iteration. The surface irradiation is neglected in the first iteration. The radiation intensities
at every control volume and direction are determined by a point-by-point method applied to
Eq. (13). For each direction, calculations start from a control volume at one of the corners
of the enclosure. That corner is selected from the sign of the direction cosines, in such a
way that the cell faces that merge at that corner are upstream cell faces coincident with
the boundaries of the enclosure. The radiation intensity at those faces is available from the
boundary conditions, enabling the calculation of the radiation intensity at the first control
volume using Eq. (13). The solution proceeds in the direction of orientation of the direction
cosines, visiting all the control volumes. Then, similar calculations are performed for all the
other directions. After all the directions have been treated, the radiation intensities leaving
the boundary surfaces are updated using the boundary conditions, Eq. (4). The iteration
process continues until the convergence criterion has been satisfied.

If the temperature field is not known, it must be determined from the simultaneous
solution of the energy conservation equation and the radiative transfer equation. In the
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problems addressed here it is assumed that radiation is the dominant mode of heat transfer;
the others are neglected. Therefore, conservation of energy may be expressed as [23]

∇ · q = κ(4σT4− G), (15)

whereq is the radiative heat flux vector,T is the temperature of the medium, andσ is the
Stefan–Boltzmann constant. The incident radiation,G, is given by

G =
∫

4π
I dÄ≈

M∑
j=1

w j I j . (16)

In the case of radiative equilibrium (i.e.,∇ · q = 0), the temperature field is updated at
every iteration from Eqs. (15) and (16).

2.6. Computational Details

In the case of a transparent medium, the convergence criterion employed in this work
was

∑
i

∑
j

∑
k

∑M
m=1

∣∣(I m
i, j,k

)n − (I m
i, j,k

)n−1∣∣∑
i

∑
j

∑
k

∑M
m=1

(
I m
i, j,k

)n < δ, (17)

wheren and n− 1 denote the present and the previous iterations, respectively, and the
summations extend over all the control volumes and directions. The prescribed tolerance,δ,
was set to 10−8 in the two-dimensional problems and to 2× 10−5 in the three-dimensional
problem.

In the case of a participating medium, the convergence criterion was

max

{ |Gn − Gn−1|
Gn

}
< δ. (18)

The maximum over all the control volumes of the quantity within the braces must decrease
below a tolerance taken as 10−4.

It was found that during the iterative solution procedure, switching between the SHR
and the HR scheme often occurs, causing convergence difficulties. To prevent this, if at a
given cell face the SHR scheme does not satisfy the boundedness criterion with respect to
the neighboring grid nodes more thannBC times during the iterative process, then the HR
scheme is used at that cell face in all the following iterations. However, the SHR scheme is
still used at other cell faces where thenBC limit is not attained. Several tests were performed
to find the optimum value ofnBC, and it was found thatnBC = 2 or nBC = 3 is usually the
best choice.

The use of the SHR scheme instead of the HR one generally degrades the convergence
rate. Therefore, it was found useful to employ the HR scheme until the error measure
considered in the convergence criterion decreases to a prescribed level, typically 10−3, and
then to switch to the SHR scheme.
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It was also verified, as reported in the next section, that the gain in accuracy is lim-
ited if the SHR scheme is used instead of the HR one for directions that make a small
angle with a coordinate axis. This has a well-known counterpart in CFD, where the up-
wind scheme may only originate significant false diffusion if the direction of the velocity
is oblique to the grid lines. Therefore, the SHR scheme was used in two-dimensional
problems ifπ/6≤ tg−1(|ηm|/|ξm|)≤π/3, while the HR scheme was employed other-
wise. In three-dimensions, the SHR scheme was used only if one or more of the angles
tg−1(|ηm|/|ξm|), tg−1(|µm|/|ξm|), andtg−1(|µm|/|ηm|) lie in the range [π/6, π/3].

Finally, to achieve a converged solution, it was often necessary to underrelax the de-
ferred correction term given by Eq. (14). This is required for both the HR and the SHR
schemes, although the SHR schemes generally require stronger underrelaxation. Although
a converged solution has been obtained in the problems tested, there is no guarantee that
convergence will be obtained for all problems.

3. RESULTS AND DISCUSSION

The results presented and discussed in this section are organized into three subsections,
according to the radiative properties of the medium. First, two- and three-dimensional en-
closures with a transparent medium are studied. Second, the medium is assumed to emit
and absorb, but no scattering is considered. The temperature of the medium is prescribed
or, alternatively, radiative equilibrium is assumed. Finally, an emitting–absorbing and scat-
tering medium is studied, including isotropic and anisotropic scattering. In all problems,
the enclosure has one hot wall, while the others walls are cold. This causes a discontinuity
of the boundary radiation intensity at the edges of the hot wall, which propagates to the
radiation intensity field within the enclosure. In such cases, skewed discretization schemes
are expected to be more accurate. However, if the radiation intensity along the bound-
ary is either constant or varies smoothly, then no major advantage of skewed schemes is
expected.

3.1. Transparent Medium

The first problem consists of a two-dimensional square enclosure (dimensionsLx = L y=
1) with a transparent medium, black walls,Ibw = 1 at the bottom wall, andIbw = 0 elsewhere.
A single direction of propagation of radiation intensity withξm= 0.5 andηm=√3/2 and
a 6× 6 uniform grid are considered. The grid and the direction were chosen to enable a
comparison between our results and those reported in [13]. The exact solution is given
by I m= 1 below the dashed lines in Fig. 2, andI m= 0 above those lines. The radiation
intensity is discontinuous along the dashed lines, as a result of the discontinuity between
the bottom and left boundary wall intensities.

Figure 2 shows the radiation intensity field computed using the step, diamond, SMART,
and skew SMART schemes, as well as the exponential high-order schemes used in
Refs. [12, 13]. The solutions obtained with the diamond and the exponential high-order
schemes have been taken from [13]. The step scheme solution is bounded but exhibits strong
numerical smearing, as expected, while the diamond scheme solution presents unphysical
oscillations and overshoots, but substantially reduces the numerical smearing. The other
four solutions given in Fig. 2 completely remove oscillations, undershoots, and overshoots
and present only moderate numerical smearing.



422 P. J. COELHO

FIG. 2. Computed radiation intensity fields in a two-dimensional square enclosure with a transparent medium
(ξm = 0.5,ηm = √3/2, 6× 6 uniform grid). The exact radiation intensity is 1 below the dashed lines and 0 above
them. (a) Step scheme; (b) diamond scheme (results taken from Ref. [13]); (c) exponential high-order scheme
(results taken from Ref. [13]); (d) exponential high-order scheme (results taken from Ref. [13]); (e) SMART; and
(f) skew SMART.
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TABLE I

Average Absolute Error of Radiation Intensity in Direction ξm = 0.5,

ηm =
√

3/2 in a Two-Dimensional Square Enclosure with a Transparent

Medium (6× 6 Uniform Grid)

Scheme Em
I 1 Em

I 2

Step 0.1998 0.1540
Diamonda 0.1224 0.0837
Exponential high-order scheme [12]a 0.0943 0.0553
Exponential high-order scheme with linear interpolation [13]a 0.0943 0.0608
Exponential high-order scheme with cubic interpolation [13]a 0.0843 0.0564
CLAM 0.1019 0.0559
MUSCL 0.0958 0.0499
SMART 0.0904 0.0445
Skew CLAM 0.0797 0.0351
Skew MUSCL 0.0741 0.0302
Skew SMART 0.0724 0.0283

a Radiation intensity field taken from Ref. [13].

The average absolute error of the radiation intensity in directionmmay be used to quantify
the solution accuracy. It is given by

Em
I =

∑I
i=1

∑J
j=1

∣∣I m
i, j − I m

i, j,exact

∣∣
I × J

, (19)

where I and J are the number of grid nodes alongx and y directions, respectively. A
relative error could not be used here, since the radiation intensity may be zero. Although
the radiation intensity is always greater than zero in practical problems, in the fictitious case
of a cold wall (Ibw = 0) and a transparent medium, the radiation intensity at an arbitrary
point of the enclosure is zero for directions leaving from the cold wall. The exact value
of the radiation intensity at a control volume may be taken either as the grid node value
or as the mean value over that control volume, yielding two different average absolute
errors, denoted byEm

I 1 andEm
I 2, respectively. These are shown in Table I for several spatial

discretization schemes. In addition to the schemes that produce the solutions displayed in
Fig. 2, Table I includes results for the exponential high-order scheme with cubic interpolation
of the upstream radiation intensity [13], the CLAM, MUSCL, skew CLAM, and skew
MUSCL schemes. The average errors of the exponential schemes are comparable to those
of the HR schemes and significantly lower than that of the diamond scheme. The step
scheme is by far the least accurate scheme, while the SHR schemes are the most accurate
ones. The SMART scheme is slightly more accurate than the MUSCL, and this is slightly
more accurate than the CLAM. This is also true for the SHR version of these schemes. These
conclusions do not depend on the wayIexact was obtained (i.e., on whetherEm

I 1 or Em
I 2 is

considered). Therefore, onlyEm
I 1 is used from now on, and the subscript 1 is removed for

conciseness.
The predicted radiation intensity along the vertical symmetry plane,x= 0.5, for direction

ξm= ηm = 0.5774 and a 11× 11 uniform grid is shown in Fig. 3. The numerical smearing
is very significant for the step scheme, as expected, since this direction makes an angle of
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FIG. 3. Radiation intensity profile along the vertical symmetry plane of a two-dimensional square enclosure
with a transparent medium (ξm = ηm = 0.5774, 11× 11 uniform grid).

45◦ with the grid lines. The HR schemes perform much better, while the SHR schemes
further approach the sharp discontinuity of the exact solution aty = 0.5. All the HR and
SHR schemes are bounded and oscillation free. This is best seen in Fig. 4, where three-
dimensional perspectives of the radiation intensity field are displayed. The results of the
CLAM and MUSCL schemes (HR and SHR versions) are not shown, since they are very
close to the results of the SMART scheme. These results are identical to those obtained in
the classical CFD problem of convection of a step profile in a prescribed oblique velocity
field.

The influence of the grid size on the average absolute error of the radiation intensity field
in directionξm= ηm= 0.5774 is shown in Fig. 5. The error decreases with grid refinement,
as expected, but the rate of convergence is low. Although the HR schemes are second-
(CLAM, MUSCL) or third-order (SMART) accurate, the observed rate of convergence
only marginally exceeds that of the first-order accurate step scheme. This is related to the
discontinuity in the radiation intensity field, which prevents the schemes from behaving
according to their formal rate of convergence. Other reasons may be responsible for the
degradation of the rate of convergence, as discussed in [21]. These include the limiting
required to prevent oscillations, the propagation to all downstream locations of local errors
that may arise when a lower order approximation is required to enforce boundedness, and
the unalignment of the stencils with respect to the ordinate directions. The last reason is
eliminated in the SHR schemes, which show a faster rate of convergence than the HR
schemes.

Up to now attention has been focused on the radiation intensity for a single direction. If
all the directions are taken into account, an average absolute error of the radiation intensity
field may be defined as

EI =
∑M

m=1 Em
I

M
. (20)

The influence of the grid size and order of quadrature on the average absolute errorEI are
shown in Fig. 6. In the first case, the S8 quadrature was used (Fig. 6a), while in the last one a
40× 40 uniform grid was employed (Fig. 6b). Although the emphasis of this work is on the
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FIG. 4. Radiation intensity field in a two-dimensional square enclosure with a transparent medium (ξm =
ηm = 0.5774, 11× 11 uniform grid). (a) Exact solution; (b) step scheme; (c) SMART; and (d) skew SMART.

FIG. 5. Average absolute error of the radiation intensity in directionξm = ηm = 0.5774 as a function of grid
size.
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FIG. 6. Average absolute error of the radiation intensity field in a two-dimensional square enclosure with a
transparent medium as a function of grid size (a) and order of quadrature (b).

spatial discretization rather than on the angular discretization, it is interesting to investigate
whether or not the SHR schemes behave like the HR schemes when the angular discretization
is refined. In fact, the superior accuracy of the SHR over the HR schemes is enhanced when
the angle between the direction of propagation of radiation and the coordinate lines, which
depends on the order of quadrature, approaches a maximum. The results show that the
relative behavior of the different spatial discretization schemes is independent of the grid
size and order of quadrature. The error of the step scheme exceeds that of the other schemes
by a factor larger than 2, while the SHR schemes are the most accurate ones. The ratio of the
error of the step scheme to the error of the other schemes increases with the grid refinement.
This shows that the step scheme has the lowest rate of convergence, as expected. However,
all the other schemes exhibit similar rates of convergence, contrary to what was observed
for directionξm= ηm= 0.5774.

To clarify these trends, the average absolute errors for every direction are summarized
in Table II for a 10× 10 uniform grid and a S8 quadrature. Similar conclusions would be
obtained from other grids or quadratures. The results of the MUSCL and SMART scheme
are not shown, since they perform similarly to the CLAM scheme. Although there are
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TABLE II

Average Absolute Error of Radiation Intensity in a Two-Dimensional Square

Enclosure with a Transparent Medium (10× 10 grid, S8 Quadrature)

Em
I

Skew CLAM
m ξm ηm Step CLAM Skew CLAM all directions

1 0.9796 0.1423 0.06607 0.03795 0.03795 0.03743
2 0.8040 0.1423 0.07516 0.04184 0.04184 0.04162
3 0.8040 0.5774 0.17820 0.08197 0.05914 0.05914
4 0.5774 0.1423 0.09209 0.04809 0.04809 0.04508
5 0.5774 0.5774 0.14668 0.04790 0.00955 0.00955

10 directions per octant, it is sufficient to look at the results of the directions listed in
Table II, because in this problem the errors for directions (ξ , η) and (η, ξ ) are equal. The
error form= 5, the direction that makes an angle of 45◦ with the coordinate lines, decreases
by a factor of 5 when the SHR scheme is used instead of the HR scheme. The correspondent
error form= 3 decreases only by a factor of 1.4, while the errors for the remaining direc-
tions do not change, since the angles they make with the grid lines do not lie in the range
[π/6, π/3]; i.e., the HR scheme is active. The errors that would be obtained if the SHR
scheme were always used (i.e., if the range [π/6,π/3] were extended to [0, π/2]), are listed
in the last column of Table II. The marginal decrease in error observed for directions 1, 2,
and 4 demonstrates that it is only worth using the skewed scheme iftg−1(|ηm|/|ξm|) is rela-
tively close toπ/4, as it was here. The error of the SHR scheme in directionm= 5(ξm= ηm)

is much smaller than that in the other directions. Therefore, the average absolute error of
the SHR schemes is dominated by the errors in the other directions, and so the rate of
convergence is similar to that of the HR schemes.

The next test problem is similar to the first one, but the geometry is a three-dimensional
cubic enclosure (Lx = L y= Lz= 1). The walls are black withIbw = 1 at the bottom wall
and Ibw = 0 elsewhere, and the medium is transparent. The average absolute error of the
radiation intensity field, given by Eq. (20), as a function of grid size is shown in Fig. 7. The
S8 quadrature was used. The results are qualitatively identical to those presented in Fig. 6a
for the two-dimensional enclosure.

3.2. Emitting–Absorbing, Nonscattering Medium

The two-dimensional enclosure studied in the previous section is considered again, with
the same boundary conditions, but containing an emitting–absorbing, nonscattering medium
with an emissive power of unity (Ibw = 1/π ) and an absorption coefficient of 1.0. In the
case of participating media it is more useful to evaluate the solution accuracy using the
incident radiation rather than the radiation intensity. Moreover, since the incident radiation
is always greater than zero, relative errors may be used. Therefore, an average relative error
of the incident radiation was taken to quantify the solution accuracy [21]:

EG =
∑I

i=1

∑J
j=1
|G−Gexact|

Gexact

I × J
. (21)
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FIG. 7. Average absolute error of the radiation intensity field in a three-dimensional cubic enclosure with a
transparent medium as a function of grid size.

Here,Gexact is taken from the exact solution of the discrete ordinate equations (Eq. (3)), re-
ported in [29], rather than from the exact solution of the radiative transfer equation (Eq. (1)).
This ensures that the computed error is a consequence of the spatial discretization error, and
is not influenced by ray effects. The results presented below were obtained using a 40× 40
uniform grid and the S8 quadrature, except in the cases where the influence of grid size or
quadrature are investigated. The influence of the spatial discretization scheme and grid size
on the solution errorEG is shown in Fig. 8. The results are consistent with those reported
for the transparent medium. All the SHR schemes perform similarly, and are more accurate
than the correspondent HR schemes. The accuracy of the SHR schemes in a 10× 10 grid
is comparable to that of the step scheme in a 80× 80 grid (notice that the errors of the step
scheme marked in Fig. 8 have been divided by a factor of 2).

FIG. 8. Average relative error of the incident radiation in a two-dimensional square enclosure with an emitting–
absorbing medium as a function of grid size.
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FIG. 9. Average errors in a two-dimensional square enclosure with an emitting–absorbing medium as a
function of the order of quadrature. (a) Average relative error of the incident radiation,EG. (b) Average absolute
error of the radiation intensity field,EI .

The influence of the order of quadrature on the incident radiation errorEG is shown
in Fig. 9a. Only the results of the CLAM and skew CLAM schemes are shown, but they
are very close to the results of the other HR and SHR schemes. The skew CLAM is more
accurate than the CLAM for S6 and S8 quadratures, as expected. However, the results of
the two schemes are similar if S4, S10, or S12 quadratures are used. This may be explained
by a compensation of errors in the calculation of the radiation intensity. In fact, all the
ordinate directions contribute to the incident radiation, according to Eq. (16). If the radiation
intensity for some directions is overestimated while for others it is underestimated, the two
opposite contributions may cancel each other out, yielding an accurate value of the incident
radiation. This explanation is supported by the average absolute error of the radiation
intensity,EI , shown in Fig. 9b, which is always lower for the SHR scheme, despite the order
of quadrature.

The influence of the absorption coefficient of the medium is shown in Fig. 10. In the
case of an optically thick medium, the termsSm

P V andβ V are the dominant ones on the
numerator and denominator of Eq. (13), respectively. The ratio of these two terms is equal
to Ib because the medium does not scatter. This explains why the average incident radiation



430 P. J. COELHO

FIG. 10. Average relative error of the incident radiation in a two-dimensional square enclosure with an
emitting–absorbing medium as a function of the absorption coefficient of the medium.

error for optically thick media is small, approximately constant, and weakly dependent
on the spatial discretization scheme. Conversely, if the medium is optically thin, those two
terms are small, and the spatial discretization scheme employed in the calculation of the cell
face intensities becomes important. Therefore, the average error of the incident radiation
is larger than in the case of an optically thin medium, and the higher accuracy of the SHR
scheme compared to the HR scheme becomes evident.

Figure 11 shows the average error of the radiation intensity field as a function of the
emissivity of the boundary surface. In this case there is no analytical solution available if
ε < 1. Therefore,Gexactwas approximated by the numerical solution obtained from a very
fine grid (320× 320 grid nodes) and the CLAM scheme. The results show thatEG increases
with the increase in the boundary emissivity. In fact, ifε increases, so does the radiation

FIG. 11. Average relative error of the incident radiation in a two-dimensional square enclosure with an
emitting–absorbing medium as a function of the emissivity of the boundary surface.
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FIG. 12. Number of iterations required for convergence as a function of the underrelaxation factor.

intensity at the bottom surface. Therefore, the discontinuity of the radiation intensity at
the bottom left and right corners, which is the main cause of the spatial discretization
errors, becomes sharper. The skew CLAM results are more accurate than the CLAM ones,
particularly for high boundary surface emissivities, since the ratioEG(CLAM)/EG(skew
CLAM) slightly increases with the increase inε.

Although the SHR schemes have consistently proved to be more accurate than the HR
ones, they also have some drawbacks. Their implementation is more tedious, they are
more sensitive to the underrelaxation factor, and they are more computationally demanding,
particularly for fine grids. The sensitivity to the underrelaxation factor is illustrated in Fig. 12.
Convergence is faster with a high underrelaxation factor, but it is possible that convergence
is not achieved if that factor is too high. In this test case, the highest underrelaxation factors
that enable convergence were 1, 0.8, and 0.6 for the skew CLAM, skew MUSCL, and skew
SMART schemes, respectively. This behavior is the expected one, and similar to that of
the HR schemes. The number of iterations,niter, and the central processing unit (CPU)
time, t , required for convergence are shown in Fig. 13. The number of iterations increases
moderately with grid size for the HR schemes, but that increase is much more significant
for the SHR schemes. Therefore, if the grid is refined, the computational requirements
of the SHR schemes increase due to both the number of grid nodes and the number of
iterations. Fortunately, since the SHR schemes are quite accurate, there is no need to use
very fine grids. Whether or not the higher accuracy of the SHR schemes over the HR
schemes compensates for their higher computational requirements is likely to be problem
dependent. This is also true for the different HR and SHR schemes; i.e., the SMART scheme
is generally more accurate than the MUSCL scheme, and this is generally more accurate
than the CLAM scheme, but the higher accuracy is associated with more CPU time required
for convergence.

The computational cost, or economy, of the different schemes may be evaluated for a given
problem by considering equal accuracy as a basis for determining economy [16]. The average
relative error of the incident radiation, taken as a measure of accuracy, is plotted in Fig. 14 as
a function of CPU time for the different discretization schemes and meshes. This allows the
comparison of the accuracy of the different schemes for a given amount of CPU time, as well
as the estimation of the CPU time required to attain a given level of accuracy. Figure 14 shows
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FIG. 13. (a) Number of iterations and (b) CPU time(s) required for convergence.

FIG. 14. Average relative error of the incident radiation as a function of the CPU time for a two-dimensional
square enclosure with an emitting–absorbing medium.
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FIG. 15. Average relative error of the incident radiation in a two-dimensional square enclosure with an
emitting–absorbing medium in radiative equilibrium.

that the HR schemes are slightly more economical than the SHR schemes for this problem.
The STEP scheme is also relatively economical in this problem, because all the walls of the
enclosure are black, the temperature of the medium is prescribed, and there is no scattering.
Therefore, it does not require an iterative procedure, unlike the HR and SHR schemes.

The same geometrical configuration and boundary conditions are considered in the next
problem, but radiative equilibrium is assumed. Hence, the energy equation (Eq. (15)) is
solved together with the radiative transfer equation. Since no exact solution is available,
Gexact is approximated as above. The S8 quadrature is used again in this problem. The
average relative error of the incident radiation as a function of the grid size is shown
in Fig. 15. The results are qualitatively similar to those shown in Fig. 8, concerning a
medium with prescribed emissive power. The errors are larger in the present case because
the temperature of the medium is obtained from the solution of the energy equation, and
so errors in the temperature field influence the incident radiation. The gain in accuracy
obtained by using the SHR schemes instead of the HR ones is also larger in this problem.
The rate of convergence of the SHR schemes seems slower than that of the HR schemes,
contrary to what would be expected. However, this may be due to the approximation used
to estimateGexact. Figure 16 shows the number of iterations and the CPU time required for
convergence as a function of the grid size. It does not reveal significant differences between
the cases of radiative equilibrium and prescribed emissive power. Figure 17 shows that in
this test case, the computational cost to achieve a given level of accuracy is similar for the
HR and SHR schemes, while the STEP scheme is much less economical, as expected.

3.3. Emitting–Absorbing–Scattering Medium

The problem studied in Section 3.2 with prescribed emissive power of the medium is
considered again. But now the medium scatters isotropically. As in the previous section, the
present calculations were carried out using a 40× 40 uniform grid and the S8 quadrature,
and Gexact was approximated by the CLAM solution in a 320× 320 uniform grid. The
average relative error of the incident radiation as a function of the scattering albedo is
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FIG. 16. (a) Number of iterations and (b) CPU time(s) required for convergence in the case of a two-
dimensional square enclosure with an emitting–absorbing medium in radiative equilibrium.

FIG. 17. Average relative error of the incident radiation as a function of the CPU time for a two-dimensional
square enclosure with an emitting–absorbing medium in radiative equilibrium.
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FIG. 18. Average relative error of the incident radiation in a two-dimensional square enclosure with an
emitting–absorbing, isotropically scattering medium.

shown in Fig. 18. The scattering albedo,ω, is the ratio of the scattering to the extinction
coefficients (ω = σs/β). The absorption coefficient was maintained constant and equal to
1.0, while the scattering coefficient was allowed to change. The results show that the errors
are largest for low or high values ofω. The skew CLAM scheme is more accurate than the
CLAM scheme, as in the case of nonscattering and transparent media. The gain in accuracy
(40–60%) is marginally influenced by the scattering albedo. Other SHR and HR schemes
perform similarly.

Finally, the medium was assumed to scatter anisotropically. The phase functions F1, F2,
B1, and B2 described in [30] were considered. The results summarized in Table III reveal
that the gain in accuracy by using the skew CLAM scheme is substantial (more than 40%)
for all the phase functions.

Nowadays, the simulation of reactive flows in geometries of relevance in industry is
often carried out using unstructured meshes. Although the application of SHR schemes
to unstructured meshes is not addressed in this work, no difficulties are foreseen in that
application. If Cartesian coordinates are used, the upstream, central, and downstream
grid nodes required in HR schemes are readily available, while SHR schemes require an

TABLE III

Average Relative Error of the Incident Radiation in a Two-

Dimensional Square Enclosure with an Emitting–Absorbing,

Anisotropically Scattering Medium

EG

Phase functiona CLAM Skew CLAM

F1 0.00382 0.00218
F2 0.00291 0.00208
B1 0.00296 0.00207
B2 0.00302 0.00208

a See Ref. [30].
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interpolation, as illustrated in Fig. 1. However, in the case of unstructured grids, an interpo-
lation is required for both HR and SHR schemes. Therefore, it is tempting to speculate that
the advantage of SHR over HR schemes might be more obvious in unstructured grids, but the
present lack of evidence recommends simply stating that this issue should be investigated
in future work.

4. CONCLUSION

Numerical smearing is one of the main sources of error in the discrete ordinates method
for the solution of the radiative transfer equation. This error is particularly relevant if the
step scheme is employed. Bounded high-order resolution schemes substantially decrease
the numerical smearing. However, the stencil used in the spatial discretization is aligned
with the coordinate axes. In this work, bounded skew high-order resolution schemes have
been employed which use a stencil aligned with the direction of the propagation of radia-
tion. Several radiative transfer problems in enclosures were solved. Both transparent and
participating media were considered, including nonscattering, isotropically scattering, and
anisotropically scattering media. In all cases, one of the walls of the enclosure was hot
and the others were cold. It was found that skewed schemes yield more accurate results,
especially for the radiation intensity along directions oblique to the grid lines, and for
optically thin media. The skewed schemes are more computationally demanding, particu-
larly for fine grids. However, these are not generally required due to the accuracy of the
schemes. Whether the superior accuracy of skewed schemes compensates for their higher
computational requirements is likely to be problem dependent.
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